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The exact solution of the equations of incompressible-fluid dynamics which is interpreted as jet flow in a
closed cavity is found. The boundary-layer equations on the cavity walls are obtained and the problem of
heat exchange between the jet and the walls is solved. It is shown that as the jet source moves away from
the cavity bottom, the Nusselt number decreases exponentially.

The Whittaker integral [1, 2] allows determination of the solution for an axisymmetric potential incompress-
ible-fluid flow using the known velocity distribution on the axis. If f0(z) is the axial-velocity distribution, then the so-
lution has the following form:

the longitudinal velocity is
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the radial velocity is
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the stream function is
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If f0(z) is the linear exponential function

f0 (z) = A + B exp (az) , (4)

then the solutions (1)–(3) can be represented as a sum of the products exp (az) and the functions of the radius r. For
example, the stream function is
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The determinations of the velocities performed in terms of the stream function give
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where the prime denotes differentiation with respect to the argument.
From the condition of flow potentiality

∂Vr

∂z
 − 

∂Vz

∂r
 = 0

we find the equation for defining the function P

P
′′ η − P

′
 + Pη = 0 ,   η = ar ,

whose solution is expressed by the Bessel function

P = ηJ1 (η) .

Now we consider the flow resulting on condition that the velocity at a certain axial point vanishes. Without
loss of generality, this point can be taken for z = 0. Then, from Eq. (4) it follows that B = −A.

Thus, the stream function is

ψ = Ar 
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 ,

the longitudinal and radial velocities are as follows:

Vz = A [1 − exp (az) J0 (ar)] ,   Vr = A exp (az) J1 (ar) . (5)

This solution has the form shown in Fig. 1.
Flow inside the cavity (right of Fig. 1) is one physical interpretation. The equation for the cavity contour is

exp (az) = 
ar

2J1 (ar)
 . (6)

The constant A is determined from the condition of assignment of the velocity (Vz = −V0) on the axis at a
certain distance h from the stagnation point. Thus, in Fig. 1 we showed the velocity profile Vz related to the axial ve-
locity at the point az = ah = 4. The constant a can be found by assignment of the limiting cavity radius Rc:

a = 
η1

(1)

Rc
 . (7)

In technological processes, there are cases where the jet of a liquid or a gas flows into an axisymmetric cav-
ity with a contour of the type (6), for example, in plasma or fire boring, drilling, and cutting. In these processes, it is

Fig. 1. Pattern of streamlines in the flow.
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necessary to know the conditions of heat transfer from the jet to the cavity walls on which the boundary layer grows.
Since the walls are curvilinear, the boundary-layer equations can conveniently be analyzed provided that they are writ-
ten in the corresponding curvilinear coordinates. As coordinates of this type we take the coordinate system (n, s, ϕ)
[3] shown in Fig. 2. The coordinate s is reckoned from the jet axis and is directed along the contour, n is the straight
line directed normal to s inside the cavity, and ϕ is the angle (it is the same as in the initial system). In principle,
this system is ambiguous, since the neighboring normals n intersect at a distance which is equal to the radius of cur-
vature of the contour. However, we consider a region extended insignificantly along the n axis and considerably
smaller than the radius of curvature at all the points. Therefore, within the limits of the region (of the boundary layer),
none of the normals intersects another.

The quadratic form in the selected coordinate system appears as
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where R(s) is the radius of curvature of the coordinate axis s, i.e., of the cavity contour. Whence we determine the
Lame′  coefficients

Ls = 1 + 
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 ,   Ln = 1 ,   Lϕ = r

0
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 .

Using the formulas presented in [4], we write the equations of incompressible-fluid dynamics in the given co-
ordinate system:

the continuity equation
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the equation of motion in projection onto the s axis
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the equation of motion in projection onto the n axis
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the energy-transfer equation with neglect of viscous dissipation

Fig. 2. Curvilinear orthogonal coordinate system (in the plane ϕ = const).
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To obtain the boundary-layer equations we use the Mises method [4]. As a result, the Lame′  coefficients will
be equal to Ln = 1, Ls = 1, and Lϕ = r0 (in what follows zero is omitted), while Eqs. (8)–(11) are transformed to the
following form:

the continuity equation is
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 = 0 , (12)

the equation of motion in projection onto the s axis is
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the equation of motion in projection onto the n axis is
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the energy equation is
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In Eq. (13), the pressure gradient is replaced by the velocity derivative outside the boundary layer for which, due to
the smallness of the boundary-layer thickness, we take the velocity on the cavity contour in potential flow
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 .

The Squire method [5] is used to determine the heat flux to the cavity wall. Using Eq. (12), we integrate Eqs.
(13) and (15) across the boundary layer:
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Now we assume that the velocity and the temperature are distributed across the boundary layer in the follow-
ing manner:
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The heat flux to the wall is equal to

q = − λ 
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 n=0
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 f ′ (0) , (18)

where the prime denotes differentiation with respect to the argument.
When the relation between the thicknesses δ and δT is known, for the heat flux to be determined it is suffi-

cient only to solve Eq. (16) for δ. Work [5] contains the relation δT = δ Pr−1 ⁄ 3, which we will use in calculations.
Having substituted the velocity approximation into Eq. (16), we obtain
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where
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If the form parameters k1, k2, and α are constant, the solution of Eq. (19) will be
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Since the cavity contour is a streamline, on the contour we have
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Using the determinations of the velocities (5) and the contour equation (6), substituting the solution (20) into
Eq. (19) and then into Eq. (18), and determining the constants a and A, as has been indicated above, we obtain the
expression for the local Nusselt number:
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At the critical point, we have

S = S0 = 
2

4 + m
 ,   Nu = Nu 0 = √(1 + 2k1 − 3k2) αη1

(1)

exp (ah) − 1
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1 ⁄ 2 Pr
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We dwell on the solution when the velocity profile is assigned by the von Ka′rma′n–Pohlhausen formula [5]
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f (x) = F (x) + ΛG (x) ,   x = 
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Whence we determine the form parameters of the profile
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We write Eq. (19) in terms of the parameter Λ:
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From this equation it follows that in the neighborhood of the critical point, where Vs = βs and s C r, we have the relation

Λ (k1 − k2) = α − Λ (1 − k2) − Λ (k1 − k2) .

which can be fulfilled on condition that Λ = 4.716 (another solution Λ = 21.142 gives a physically incorrect velocity
profile). The determinations of Λ and Nu yield
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In Fig. 3, along with the form of the cavity contour, we present the results of calculations of the ratio Nu/Nu0
as a function of the dimensionless coordinate ζ for the von Ka′rma′n–Pohlhausen profile (curve 2) and for the simplest
approximation of the velocity profile f(x) = x (curve 3). As is seen, the difference in the calculated heat fluxes is not
large. It should also be noted that curve 2 is no different, in practice, from the curve calculated for the profile:

f (x) = 
3
2

 x − 
1
2

 x
3
 .

Fig. 3. Cavity contour ηc and the ratio of the Nusselt numbers at the given
point of the contour and at the stagnation point: 1) ηc; 2) Nu/Nu0 for the von
Ka′rma′n–Pohlhausen velocity profile; 3) Nu/Nu0 for the profile f(x) = x.

Fig. 4. Plot for determination of the parameter a (curve 1) and arc = η1
(1)

(curve 2).
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The increase in heat transfer with distance from the critical point is attributed to the exponential growth in the
velocity along the contour, which results in a decrease in the boundary-layer thickness in this direction and not in an
increase (the ratio Nu/Nu0 is in inverse proportion to the ratio δ ⁄ δ0).

In practical application of this theory to calculation of the heat transfer to the cavity walls, the question arises
of whether it is possible to determine the parameter a if the real dimensions of the cavity radius rc(rc < Rc) and of the
depth h are known. For the cavity whose form is described by expression (6) we find

h
rc

 = 
1
η

 ln 




η
2J1 (η)




 .

Setting η = arc, from this transcendental equation we can find the parameter a as a function of h ⁄ rc (Fig. 4). It is
evident that already for h ⁄ rc of the order of 1 the quantity rc can be considered to be equal, in practice, to the lim-
iting Rc. For a small cavity depth, a = 8h ⁄ rc

2.
Attention should be paid to the exponential influence of the cavity depth on the Nusselt number in formulas

(21)–(23). For a rather large ratio h ⁄ rc, the heat flux to the walls decreases sharply. Probably, that is the reason why
the efficiency of the jet methods of drilling of deep wells is low.

NOTATION

a, coefficient in Eq. (4), 1/m; A and B, constants in Eq. (4), m/sec; r, ϕ, z, cylindrical coordinates; n, s, ϕ,
curvilinear coordinates; r0 and z0, coordinates of the point (n = 0, s, ϕ) in the cylindrical coordinate system; x =
n ⁄ δ, dimensionless coordinate; ζ = s ⁄ δ, dimensionless coordinate; Vr and Vz, radial and axial velocities of potential
flow, m/sec; vr and vz, radial and axial velocities in the boundary layer, m/sec; vn and vs, velocity components in the
curvilinear coordinate system, m/sec; V0, axial velocity at the assigned point on the cavity axis, m/sec; R, radius of
curvature of the cavity contour, m; Rc, limiting radius of the cavity, m; dc, limiting diameter of the cavity, m; rc, run-
ning radius of the cavity, m; dl, element of length in the curvilinear coordinate system, m; Ls, Ln, and Lϕ, Lame′  co-
efficients; h, cavity depth, m; T, temperature, K; p, pressure, N/m2; c, heat capacity, J/(kg⋅K); q, heat flux, W/m2; ρ,
density, kg/m3; λ, coefficient of thermal conductivity, W/(m⋅K); µ, coefficient of viscosity, kg/(m⋅sec); δ, thickness of
the dynamic boundary layer, m; δT, thickness of the thermal boundary layer, m; J1(η), Bessel function of first order;
η1

(1), first root of the function J1(η); ψ, stream function, m2/sec; f0(z), velocity distribution along the z axis; m, expo-
nent in Eq. (20); S(η), function in Eq. (21); Ψ(η), function in determination of S(η); Λ, dimensionless number in the
formula of the von Ka′rma′n–Pohlhausen profile; f(n ⁄ δ) and f(n ⁄ δT), dimensionless velocity and temperature distribu-
tions in the boundary layer; η, dimensionless coordinate; P(ar), function entering into the determination of the stream
function; β, velocity gradient in the neighborhood of the critical point; Pr, Prandtl number; Re, Reynolds number; Nu,
Nusselt number. Subscripts: 0, critical point; c, cavity; w, wall; ∞, edge of the boundary layer; 1 and 2, numbers of
the form parameters of the boundary layer.
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